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Abstract This study was carried out to investigate the effects
of selenium (Se) on the uptake and translocation of cadmium
(Cd) and essential elements in paddy rice (Oryza sativa L.,
Shuangyou 998). Selenium could alleviate/aggravate Cd
toxicity in paddy rice, which depended on the dosages
of Se and/or Cd. When Cd treatment level was as low as
35.6 uM, <12.7 uM Se could inhibit the uptake of Cd in
paddy rice and increase the biomass of paddy rice; however,
with Cd levels reaching 89-178 uM, the addition of Se
resulted in increases in Cd uptake and exacerbated the growth
of paddy rice. Cd always inhibited the uptake of Se. Cd alone
suppressed the uptake of Ca, Mg, Mn, Cu, and Zn; however,
Se reversed the decreases in the concentrations of the said
elements, suggesting an element regulation mechanism to
relieve Cd toxicity. Without Cd in the solution, low doses of
Se increased the biomasses of shoots and roots at the expense
of the more or less decreases in the concentrations of Ca, Mg,
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K, Fe, Mn, Cu, and shoot Zn, indicating an antagonistic effect
of Se on these cations. The presence of Cd could also reverse
these decreases especially at the highest treatment levels for
both Se and Cd, also suggesting an element regulation mech-
anism responsible for the detoxification of high dosages of Se.
Consequently, when Se is used to alleviate Cd toxicity, atten-
tion must be paid to the Cd pollution extent and doses of Se
supplement.

Keywords Antagonism - Uptake - Essential element -
Element regulation - Synergism

Introduction

Cadmium (Cd) is an important environmental pollutant with
high toxicity to animals and plants and ubiquitously distrib-
utes in the environment. The Cd concentrations in soils
cover a wide range of concentrations (0.01 to 30 mgkg ")
[1]. Ever-increasing Cd contamination in soils has been
observed due to anthropogenic activities such as mining,
fertilization, and disposal of metal-contaminated wastes and
sewage sludge [2, 3]. Plants growing on Cd-polluted soils
can accumulate a large amount of Cd, such as vegetables
growing on Cd-contaminated soils derived from supplemen-
tation of Cd-containing fertilizers [4] or in the vicinity of
mining or smelting operations [5-8].

The accumulation of Cd in plants can threaten the health
of human beings via the food chain and produce harmful
effects on these plants, such as reduced photosynthesis,
decreased concentrations of essential elements, growth in-
hibition, and, finally, death [9]. Therefore, strategies must be
explored to reduce the accumulation of Cd in crops. Many
strategies have been developed to reduce the accumulation
of heavy metals (or metalloids) in crops and soils or lower
their availability in soils. For instance, the mobility of
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arsenic (As) in As-contaminated soils decreased after
the supplementation of ferrous sulfate (FeSO,4) [10]; in
a Cd-contaminated soil treated with porous hydrated
calcium silicate, decreased Cd availability in soil was also
observed [11].

A current technology using selenium (Se)-containing
compounds as foliar spray or base fertilizers has been
applied in order to increase Se content in the edible parts
of crops or to relieve injuries generated from different
environmental stresses to plants [12]. Selenium is an
essential element for human beings and animals, and it
also shows beneficial effects on plants at low dosages
[12]. Selenium deficiency can damage human health, and
its deficiency will result in more than 40 types of diseases
[13, 14]. One of the beneficial effects of Se on plants is
that it can be used to counteract both abiotic (e.g., salt and
heavy metal toxicity) and biotic (e.g., plant diseases,
pests, or senescence) stresses. Therefore, when Se-
containing compounds are used to reduce the concentra-
tions of heavy metals in crops to meet the quality stand-
ards in terms of heavy metal concentrations, it will also
enhance the Se concentration in the edible parts and
satisfy the needs of people for Se. Previous reports have
shown that Se may alleviate the toxicity of heavy metals
mainly via the following ways: (1) lightening oxidative
stress [12, 15], (2) directly inhibiting the uptake of heavy
metals [16-23], (3) rebuilding chloroplasts and increase
the contents of chlorophyll [17, 24, 25], and (4) recovering
cell membrane integrity [21, 24, 26].

In plants, some essential elements are found to help
plants counteract environmental stresses, such as Ca, Mg,
and K [27]. In addition, the uptake of Cd seems to be mainly
via some transporters responsible for the uptake of some
essential elements, such as Fe**, Mn**, Ca®*, and Zn** [28,
29]. Tt is hypothesized that Se's effects on the regulation of
the uptake and redistribution of some essential elements
may be an important mechanism to alleviate Cd toxicity.
However, this has not previously been studied. Consequently,
the objectives of this study were to examine whether Se can
regulate the uptake of some essential elements to alleviate the
toxicity of Cd in paddy rice and to explore the interactions
between Se and Cd.

Materials and Methods
Plant Material and Culture Conditions

After being surface-sterilized by 2 % (v/v) NaOCI for
10 min, paddy rice seeds (Oryza sativa L., Shuangyou
998) were thoroughly rinsed by deionized water and then
germinated in a moist mixture of perlite and vermiculite
(1:1, v/v) in a controlled growth chamber with a constant
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temperature (25 °C), 12-h photoperiod, and 70 % relative
humidity. After 14 days, healthy and uniform seedlings were
selected for the hydroponic experiment.

The uniform seedlings were transplanted to the hydro-
ponic systems containing 100 %-strength Espino nutrient
solution to acclimate for 3 weeks with vigorous aeration.
The composition of the nutrient solution was 0.38 mM Ca
(NO3),-4H,0, 1.60 mM MgSO,4-2H,0, 0.37 mM
(NH4),S04, 0.25 mM KH,PO,4, 0.15 mM FeCl,, 0.05 mM
H3;BO;, 0.77 uM ZnSO47H,0, 11 puM MnCl,-2H,0,
0.32 pM CuSO45H,0, 0.085 uM H,Mo044H,0. The
controlled conditions of the greenhouse were as follows:
25/20 °C day/night temperatures, relative humidity of 60—
70 % and a 16-h photoperiod, a light intensity of 100 pmol
m %s ', Three weeks later, the plants were transplanted to an
opaque plastic pot containing 1 L of treatment solution, in
which Se and Cd were added. Selenium was supplied as
Na,SeO3 with four levels: 0 (Seg), 1.27 (Se;27), 12.7
(Se2.7), and 63.5 (Segs.s) WM. Cadmium was added in the
form of 2CdCl,-5H,O with four levels: 0 (Cdy), 35.6
(Cd3s.), 89 (Cdgo), and 178 (Cd;7g) M. In total, there were
16 treatments arranged as follows: Sey+Cd, (control), Seg+
Cdss., Sep+Cdgy, Seg+Cd,7g, Sej27+Cdo, Sey7+Cdsss,
Sey 27+ Cdge, Sej27+Cd;7g, Sejz7+Cdo, Seiz7+Cdss.e,
Sej2.7+Cdgy, Sejz7+Cd; 75, Seez.s+Cdo, Sess.s+Cdss.e,
Segs.5+Cdgy, and Seq3 s+Cd;75. In each plot, one plant
was used. Each treatment was replicated in three vessels.
The pH of this solution was adjusted to 5.5 with diluted
NaOH or HCI. The treatment solution was renewed once
every week and aerated vigorously.

Determination of Elements

After 14 days of exposure, the plants were harvested.
After being thoroughly rinsed with tap water and deion-
ized water, the plants were separated into shoots (leaves
and stems) and roots, weighted, dried, and pulverized. The
pulverized plant materials were digested using concentrat-
ed HNO; and HCIO4 [30]. The concentrations of the
elements (Se, Cd, Ca, Mg, K, Fe, Mn, Cu, and Zn) were
determined by inductively coupled plasma mass spectrom-
etry (ICP-MS, Agilent7500a, USA) in the Central Labo-
ratory of Tianjin Academy of Agricultural Sciences of
China. The accuracy of element analysis was checked by
standard reference material from the Center for Standard
Reference of China.

Data Analysis

All data were subjected to two-way ANOVA analysis com-
bined with Tukey's multi-comparison test (P<0.05). All
results were expressed as means. Statistical analyses were
performed using SAS software.
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Results
Effects of Se and Cd on the Biomass of Paddy Rice

After 14 days of exposure, some of the seedlings of paddy
rice showed visible toxic symptoms especially at the highest
exposure levels of Se and Cd, such as necrosis and chlorosis
of the leaves, suggesting their toxicity. Regardless of the
presence of Se in the solution, the biomasses of shoots and
roots of paddy rice were both significantly inhibited by Cd
(Fig. 1a, b; Table 1), and when compared to the control, the
treatments of Cd35A6+Seo, Cd39+seo, and Cd178+Se0 de-
creased the biomass by 30.8, 42.5, and 59.1 %, respectively
(data not shown). When Cd was absent from the solution
and compared to the control, the additions of 1.27 uM Se and
12.7 uM Se increased the biomass of roots by 18.2 and
44.2 %, respectively (data not shown), but slightly decreased
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Fig. 1 a, b Effects of cadmium and selenium on the biomass of paddy
rice after 14-day co-exposure or single exposure to cadmium and selenium

shoot biomass of paddy rice. More addition of Se up to
63.5 uM significantly decreased the biomasses of shoots and
roots (Fig. 1a, b), up to 59.4 and 54.5 %, respectively, when
compared to the control. When compared to the treatment of
Cd35.6+Seo, the treatments of Cd35A6+S€1‘27 and Cd35A6+
Se, 7 enhanced the shoot and root biomasses up to 29.6 and
25.4 % (data not shown), respectively, suggesting a detoxifi-
cation role of Se to low dosages of Cd. However, the addition
of >12.7 uM Se to the solution containing >89 uM Cd
aggravated the growth of paddy rice and decreased the bio-
masses of shoots and roots (Fig. 1a, b).

Effects of Se and Cd on Their Uptake in Paddy Rice

When Se or Cd was individually presented in the solution,
the contents of Cd or Se in both shoots and roots signifi-
cantly increased with the increased treatment levels of Cd or
Se, respectively (Fig. 2a—d). The roots of paddy rice accu-
mulated more Se and Cd than the shoots, with the highest
contents of Se and Cd being 22.8 mM at Cdy+Ses and
32.8 mM at Cd,p+Ses in the roots of paddy rice, respec-
tively (data not shown). The effects of Se on the uptake of
Cd were dose dependent: when the levels of Cd in the
solution <35.6 uM, Se showed antagonistic effects on Cd
uptake and decreased its contents both in the shoots and
roots. For example, compared to the treatment of Cdss ¢+
Sey, the treatment of Cdss ¢+ Se; decreased the Cd content
by 36.6 % in the roots and 69.8 % in the shoots (data not
shown). However, when Cd levels were over 35.6 uM, the
addition of Se significantly increased the contents of Cd
both in the shoots and roots (Fig. 2a, b). For example, the
extra addition of 63.5 uM Se to the solution containing
178 uM Cd enhanced the Cd content in the shoots by
95.5 % and in the roots by 76.5 % when compared to the
treatment of Cd;;3+Sey (data not shown). Cd constantly
inhibited Se uptake both in the shoots and roots of paddy
rice (Fig. 2c, d).

Effects of Se and Cd on the Uptake of Ca and Mg in Paddy
Rice

Whenever Se or Cd was individually presented in the solu-
tion, the changes of Ca contents in the shoots and roots both
showed similar trends: decreased at relatively low treatment
levels of Se or Cd but more or less increased at their higher
treatment levels although still lower than the control levels
(Fig. 3a, b). When Se and Cd both appeared in the solution
and Se (or Cd) was settled at certain treatment level, the
contents of Ca both in the shoots and roots increased with
the increased Cd (or Se) levels (Fig. 3a, b). For example,
when 12.7 uM Se was added to the solution, 178 uM Cd
enhanced the content of Ca in the shoots by 85.1 % when
compared to the treatment of Cdy+Se;, 7 (data not shown).
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Table 1 Results of the two-way

Source of variation

ANOVA F values

Se treatment Cd treatment Sex Cd interaction

ANOVA and Tukey’s multiple- Tissues
range tests for the effects of Se
and Cd on the biomass, Se,
Cd, as well as essential element
contents in paddy rice
Biomass Shoots
Roots
Se Shoots
Roots
Cd Shoots
Roots
Ca Shoots
Roots
Mg Shoots
Roots
K Shoots
Roots
Fe Shoots
Roots
Mn Shoots
ns not significant F ratio (P<0.05) Roots
*P<0.05 (significant); Cu Shoots
**P<0.01 (significant) Roots
F values for the SexCd Zn Shoots
interaction, Se treatment, and Cd Roots
treatment

85.30%m** 39.98%* 4.62%*
44,55%%* 26.01%* 3.99%*
280.20** 117.24%%* 21.42%%*
442.15%* 8.38%** 1.70 ns
5.75%%* 313.24%%* 17.53%%*
11.67%* 372.38%%* 12.98%*
9.57%* 14.62%* 7.23%%*
91.91%* 40.05%* 13.95%%*
3.40%* 7.02%%* 5.00%*
22 47%* 9.70%* 5.23%*
2.83 ns 1.34 ns 2.40%*
48.76** 30.34%* 2.04 ns
1.96 ns 19.25%%* 2.94%*
14.00%* 23.38%* 13.91%*
14.03%%* 12.39%* 16.52%%*
42.74%% 28.41%%* 10.52%%*
1.38 ns 0.30 ns 3.92%*
12.84%%* 22.59%%* 17.35%%*
0.74 ns 12.44%%* 3.61%*
10.07%* 15.06** 1.00 ns

Without Cd in the solution, the content of Mg in shoots of
paddy rice was suppressed by increased Se levels (Fig. 3c¢),
and up to 31.7 % reduction was observed at Cdy+Seg; 5
when compared to the control. However, with Cd level
increasing up to 178 puM, shoot Mg content was enhanced
up to 27.5 % by 63.5 uM Se when compared to the treat-
ment of Cd;73+Sey (data not shown). When Se was absent
from the solution, the content of Mg in the shoots of paddy
rice decreased at relatively low treatment levels of Cd but
increased at its higher treatment levels; however, when
63.5 uM Se was added, shoot Mg content was fortified by
Cd levels (Fig. 3¢c). The content of Mg in the roots showed
similar trends as that in the shoots (Fig. 3d).

Effects of Se and Cd on the Uptake of K and Fe in Paddy
Rice

The addition of Se always lowered the content of K in the
shoots when Cd was not supplied into the solution (Fig. 4a);
however, with the Cd level increasing up to 178 uM, K
content was enhanced by 63.5 uM Se up to 11.2 % in the
shoots (data not shown). In the absence of Se, low dosages
of Cd increased but high doses of it decreased the shoot K
content, respectively; however, with Se level reaching
63.5 uM, the addition of Cd constantly enhanced shoot K

@ Springer

content (Fig. 4a). In the roots of paddy rice, the addition of
Se and Cd, individually or together, restrained the uptake of
K (Fig. 4b).

In terms of Fe, a single addition of Se decreased the Fe
contents both in the shoots and roots. However, when Cd
treatment level was 178 uM, the extra addition of 63.5 uM
Se enhanced the content of Fe (Fig. 4c, d) in the shoots by
30.4 % and in the roots by 32.8 % compared to the treatment
of Cd;-,3+Se, (data not shown). Regardless of Se presence
or not in the solution, the content of Fe in the shoots was
enhanced by the increasing Cd levels (Fig. 4c). For the root
Fe content, it was strengthened by 36.5 uM Cd but lowered
by high doses of Cd in the absence of Se in the solution;
however, upon the highest Se treatment level of 63.5 uM,
increasing Cd levels up to 178 uM only slightly enhanced
root Fe content (Fig. 4d).

Effects of Se and Cd on the Uptake of Mn and Cu in Paddy
Rice

Without Cd addition, the supply of 63.5 uM Se decreased
the shoot Mn content (Fig. 5a) up to 50.2 % compared to the
control; however, with Cd level increasing up to 178 uM,
63.5 uM Se increased the shoot Mn content up to 38.6 %
compared to the treatment of Cd;,5+Se, (data not shown).
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Fig. 2 a-d Effects of cadmium
and selenium on their uptake in
the shoots and roots of paddy
rice after 14-day co-exposure or
single exposure to cadmium
and selenium
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Fig. 3 a-d Effects of cadmium
and selenium on the contents of
calcium and magnesium in the
shoots and roots of paddy rice
after 14-day co-exposure or
single exposure to cadmium
and selenium
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Fig. 4 a—d Effects of cadmium
and selenium on the contents of
potassium and iron in the shoots
and roots of paddy rice after
14-day co-exposure or single
exposure to cadmium and
selenium
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presented in the solution; however, with Cd level reaching
up to 178 uM, it was enhanced by 63.5 uM Se up to 76.6 %
when compared to the treatment of Cd;;5+Se, (data not
shown). When Se was absent from the solution, the in-
creasing Cd levels decreased the root Mn content. For
example, the treatment of Cd;;3+Se, inhibited the root
Mn content by 50.1 % compared to the control, but when
63.5 uM Se was added to the medium, the root Mn
content was instead reinforced by 178 uM Cd (Fig. 5b) by
11.5 % (data not shown).

Concerning Cu content, a single exposure of Se (or Cd)
decreased the contents of Cu both in the shoots and roots of
paddy rice. For instance, when compared to the control, the
treatment of Cd;;3+Se, or Cdy+Seq; 5 decreased the root
Cu content by 73.5 or 73.1 %, respectively. However, when
Se and Cd both appeared in the solution, with Se (or Cd)
increasing up to its highest treatment level, the contents of
Cu in the shoots and roots of paddy rice were both fortified
by increased Cd (or Se) levels (Fig. 5c, d). For example,
compared to the treatment of Cdy+Segs 5, the treatment of
Cd;75+Seg3.5 enhanced the root Cu content by 40.2 %;
when compared to the treatment of Cd;,3+Sey, the treat-
ment of Cd;;3+Seqs3.5 increased the root Cu content by
42.4 % (data not shown).

Effects of Se and Cd on the Uptake of Zn in Paddy Rice

With respect to shoot Zn content, a single exposure of Se (or
Cd) decreased it; however, it was enhanced by increased Cd
(or Se) levels when Se (or Cd) levels increased up to its
highest treatment level. For example, when Cd (or Se) was
absent from the solution, 63.5 uM Se (or 178 uM Cd)
decreased the shoot Zn content by 25.9 % (or by 12.6 %)
compared to the control (data not shown). In the roots,
increasing Cd always decreased but increasing Se increased
the root Zn content whenever Se or Cd was presented or not,
respectively (Fig. 6a, b). For instance, when Se was not
added in the solution, 178 uM Cd decreased the root Zn
content by 29.0 %; however, when Cd was absent from the
solution, 63.5 uM Se increased the root Zn content by
38.8 % compared to the control (data not shown).

Discussion

The present study was carried out to explore the effects of
Se and Cd co-exposure on the growth of paddy rice and their
uptake and the effects of their interaction on the uptake of
essential elements. This plant showed a high accumulating
ability for both Se and Cd, particularly in the roots, and the
highest content for Se and Cd was 22.8 mM at a treatment of
Seg3 51+ Cdy and 32.78 mM at a treatment of Segz 5+Cd;7g,
respectively. The effects of Se on the biomass of paddy rice
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Fig. 6 a, b Effects of cadmium and selenium on the content of zinc in
the shoots and roots of paddy rice after 14-day co-exposure or single
exposure to cadmium and selenium

were dose dependent, and a single exposure of low dosages
of Se stimulated but high levels of it inhibited the growth of
paddy rice especially for the roots, indicating a dual role of
Se (Fig. 1a, b). In the absence of Se, Cd damages paddy rice
and significantly decreases the biomasses of the shoots and
roots of paddy rice.

However, the Se-mediated alleviation for Cd toxicity via
reducing Cd uptake might be dose dependent on both Se and
Cd levels. When Cd and Se levels were lower than 35.6 and
12.7 uM, respectively, the addition of Se could alleviate the
toxicity of Cd and reverse the decreases in the biomasses of
shoots and roots (Fig. la, b). This alleviating procedure
might be partially related with the suppression of Cd uptake
by Se. Similar inhibition of Cd uptake by Se was also
observed in the above-mentioned studies. However, with
Cd levels increased to more than 89 uM, Se addition even
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low as 1.27 uM could exacerbate the growth of paddy rice,
which might be ascribed to the uptake stimulation of Cd by
Se. Similar stimulations in the uptake of heavy metals by Se
were also reported, such as As in Thunbergia alata [31],
aluminum (Al) in ryegrass [32], Cd and Cu in the roots of
Sinapis alba L. seedlings [19], and Cd and Cu in wheat
(Triticum aestivum L. cv. Sunny) and pea (Pisum sativum L.
cv. Fenomen) [33].

In this study, the contents of Ca, Mg, K, Fe, Mn, Cu, and
shoot Zn were all restrained by single exposure of low
dosages of Se in spite of its beneficial role for plant growth.
Generally, the addition of Se often shows antagonistic
effects on some essential elements, such as phosphorus (P)
[34-36], sulfur [35, 37], as well as Ca, Mg, K, P, Fe, Cu, and
Zn under some conditions [27]. However, high addition of
Se might again need some elements to resist its toxicity,
such as Ca, Mg, and K in Se-accumulator Pteris vittata L.
[27] and Ca in paddy rice in this study.

Similar to Se, the addition of low dosages of Cd reduced
the contents of Ca, Mg, root K, Mn, Cu, and Zn in this
study, also indicating an antagonistic role on the uptake of
these elements. The decreases in the contents of these ele-
ments were in accord with the results of Zembala et al. [21].
Furthermore, the disturbances of the uptake of essential
elements are thought to be one mechanism for Cd toxicity,
which might be one reason for the inhibition of growth of
paddy rice after single Cd exposure in this study. For exam-
ple, Wicklifr et al. [38] considered that the chlorosis of Cd-
stressed plants might be ascribed to Cd-induced insufficien-
cies of Fe and Zn. However, being inconsistent with the
above results, the content of shoot Fe was slightly stimulat-
ed by increasing Cd levels, but root Fe was significantly
enhanced by 35.6 uM Cd when Se was absent from the
solution in this study (Fig. 4d). This inconsistency might be
due to the different species of plants and/or the different
dosages of Cd. For instance, Zhang et al. [39] showed
genotype-dependent effects of Cd on Fe, Zn, Cu, Ca, and
Mg for the uptake and translocation in wheat. The interac-
tions of Cd and Fe, Zn, and Cu are synergetic in uptake and
translocation from root to shoot by different rice cultivars
and genotypes [40]. Fe and Zn contents in the leaves, stems,
and roots of Sedum alfredii Hance were enhanced by in-
creasing Cd treatment levels [41].

When Se and Cd both occurred in the solution, Se’s pres-
ence (or Cd’s) reversed the influences of single Cd (or Se)
exposure on the contents of most essential elements tested,
showing as their increased contents both in the shoots and
roots, which was well in line with the results of Zembala et al.
[21]. The increases in Ca, Mg, and K contents might be due to
the reason like that for high levels of single Se exposure as
mentioned above because Lavoie [42] suggested that some
essential trace metals (Ca and Zn) may control Cd uptake and
toxicity in marine species. The enhanced Fe, Mn, Cu, and Zn
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contents after the addition of both Se and Cd in this study were
possibly used to reactivate the activities of some enzymes
using them as co-factors, such as superoxide dismutase
(SOD) (Fe, Mn, Cu, and Zn), peroxidase (Fe), catalase (Fe)
enzyme, and enzymes involved in the biosynthetic pathway of
chlorophylls (Fe). Although these enzymes were not deter-
mined in this study, Zembala et al. [21] claimed that the
elevated Zn content might suggest an enhanced activity of
SOD isoenzymes. The reactivation of these enzymes was
observed in many heavy metal-stressed plants after Se addi-
tion, such as Al-stressed ryegrass [32], Cd-stressed marine red
alga [12], and As-stressed mung bean [17]. It was worth
noting that although the contents of most above essential
elements finally returned to their initial levels or higher than
the levels as the control at a treatment of Segs 5+Cd; 75, their
comeback did not prevent the decreases in the biomass of the
shoots and roots of paddy rice in this study, suggesting some
other toxic mechanisms for Se and Cd except for the distur-
bances of essential elements.

In this study, we demonstrated that the addition of low
dosages of Se could alleviate the toxicity of low dosages of
Cd, possibly via the following ways: (1) direct inhibition of
Cd uptake by Se and (2) regulation of essential element
uptake by Se. However, high levels of Se or Cd alone in
the solution produced damage to paddy rice and remarkably
reduced the biomass of shoots and roots. When paddy rice
suffered from high levels of Cd, the addition of Se impaired
rather than improved the growth of plant, possibly due to the
stimulation of Cd uptake by Se. Consequently, it is impor-
tant to pay attention to providing proper doses of Se applied
to assist in alleviating the amount of Cd accumulated in
paddy rice.
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