当前位置: 首页» 最新文章

Jie Mei, Zhiqiang Li, Shaoqun Zhou, Xiao-Lin Chen, Richard A. Wilson, Wende Liu*. Effector secretion and stability in the maize anthracnose pathogen Colletotrichum graminicola requires N-linked protein glycosylation and the ER chaperone pathway. New Phytologist, 2023, doi:10.1111/nph.19213

       点击数: 次      发布时间:2023-08-23

Summary

N-linked protein glycosylation is a conserved and essential modification mediating protein processing and quality control in the endoplasmic reticulum (ER), but how this contributes to the infection cycle of phytopathogenic fungi is largely unknown.

In this study, we discovered that inhibition of protein N-glycosylation severely affected vegetative growth, hyphal tip development, conidial germination, appressorium formation, and, ultimately, the ability of the maize (Zea mays) anthracnose pathogen Colletotrichum graminicola to infect its host.

Quantitative proteomics analysis showed that N-glycosylation can coordinate protein O-glycosylation, glycosylphosphatidylinositol anchor modification, and endoplasmic reticulum quality control (ERQC) by directly targeting the proteins from the corresponding pathway in the ER. We performed a functional study of the N-glycosylation pathway-related protein CgALG3 and of the ERQC pathway-related protein CgCNX1, which demonstrated that N-glycosylation of ER chaperone proteins is essential for effector stability, secretion, and pathogenicity of C.graminicola.

Our study provides concrete evidence for the regulation of effector protein stability and secretion by N-glycosylation.

 

New Phytologist, IF=9.4

https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.19213